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Introduction

1. Graph Contrastive Learning (GCL) has emerged as a promising self-supervised

learning paradigm for obtaining graph/node embeddings in various applications.
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3. Basic idea: introduce cohesive subgraphs to guide topology
augmentations
 Cohesive subgraph is a widely prevalent and significant
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o | GNN-baseq T |, substructure with crucial applications in various fields.
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at least (k - 2) triangles
of the subgraph.

Augmented Graph Node Embedding Graph Embedding

2. Shortcomings of existing augmentation strategies: randomly deleting
important edges/nodes may cause the augmented views to vary far away
from the original graph, thus degrading the learned graph/node embedding.
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4. Research questions

* Property Enrichment. Can we enrich the topology augmentation
with more essential graph properties to improve GCL?

Unified framework. Can we design a unified framework that

Original graph

IZ> Has property A o

{* — o incorporates graph properties into various GCL methods?
embedding Sample subgraphs o e Expressive Networks. Most existing GCL methods use GNNs as
|| asreement . . . . ! encoders, but GNNs encounter difficulties in capturing subgraph
Augmented ?I// W ° p‘y —, Does not hive properties. Can we design a more expressive graph encoder that can
Braphs . J L L ) Propery capture subgraph information effectively?

m Table 2: Accuracy (%) on graph classification (OOM: out-of-memory).

1;1/10(11;16 I: Cohesive Subgraph Extraction Method Social Graphs (High Degree) Social Graphs (Low Degree) Biomedical Graphs
opology R e N
Augmentation |’ k-core N k-truss IMDB-B IMDB-M COLLAB AVG. RDT-B RDT-T AVG. ENZYMES PROTEINS AVG.
Enhancement { ?. J [%} | [ i}\' }[%J InfoGraph 71.34+0.24  47.93+0.71  69.12+0.15  62.80  89.39+1.81  76.23+0.00  82.81  26.73+3.75  74.09+0.48  50.41
__________________________________________________ AD-GCL 71.28+1.10 47.59+0.62 71.22£0.89  63.36  88.84+0.90 76.51+£0.00  82.68  27.33+2.28 73.39£0.85 50.36
/ AutoGCL 71.14+0.71 48.61+0.55 67.27£2.64  62.34  389.31+£1.48 77.13£0.00  83.22 29.83+2.24 73.33+0.27 51.58
/ : Deterministic Topology \ RGCL 71.14£0.64 48.28+0.60 73.48+0.93 64.30 91.38+£0.40 OOM / 33.33+£1.61 73.37£0.35 93.35
Probabilistic Topology | Augmentation SimGRACE 71.44+0.28 48.81+0.92 69.07+0.24 63.11 86.65+1.12 76.64+0.01 81.65 31.37+1.59 73.42+0.37 52.40
Augmentation | GCL-SPAN 70.84£0.37 47.95%£0.47 74.33£0.40  64.37 OOM OOM / 27.63£1.13 72.06£0.25 49.85
Dropping Probability OIR Edge Weight . GraphCL 71.48+0.44 48.11+0.60 72.36£1.76 63.98 91.69+0.70 77.44%10.03 84.57 32.83+£2.05 74.3210.76 53.58
plgeﬁgnement : Updating CTAug-GraphCL  76.60+1.02 51.12+0.57 81.72%0.26 69.81 92.28+0.33 77.48%0.01 84.88 39.17+1.00 74.10%+0.33 56.64
[
\ : \ Reweighted Grapy JOAO 71.40+0.38 48.68%+0.36 73.40£0.46 64.49 91.66%£0.59 77.24£0.00  84.45 34.60£1.06 74.32%0.46 54.46
/ / : CTAug-JOAO 76.80+0.71 51.19+0.88 81.90+0.53 69.96 92.19+0.24 77.35%£0.02 84.77  39.92+1.36 74.46%0.13 57.19
|
9 : MVGRL 71.88+0.73 50.19+0.40 80.48+£0.29  67.52 OOM OOM / 34.20+0.67 74.33+£0.62 54.27
: : CTAug-MVGRL 73.04+0.65 50.79+0.54 81.09+£0.37  68.31 OOM OOM / 35.46+1.20 75.00+0.38  55.23
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Subgraph Structure-Aware Subgraph Structure-Aware : o 23 X CTAug-GraphCL ~ 76.60+1.02 51.12+0.57 81.72+0.26 69.81
GNN Encoder (k-core) GNN Encoder (k-truss) i 1‘0 E = e Module Ablation
7 \ / N S e I Only Module 1~ 71.54+0.27  49.11£0.48  72.64+0.63  64.43
< — > % > 1 o0 04 08 12 16 20 0 Only Module 2 73.80+1.21  50.27+0.81  80.03+0.42  68.03
Graph Emb. g/la)ﬂmlzet Graph Emb.  Graph Emb. Maximize Graph Emb. Log Average Degree ’ N:mhersnf srihs (lj 10412 ’ Cohesion Property Ablation
. reemen . : :
(Original) \g‘ (k-core Aug.)  (Original) ~Agreement (k-russ Aug.) Figure 2: CTAug’s improve- - Only k-core 75.92+0.67 51.39+0.14  81.36+0.16  69.56
ment on datasets with vary- igure 3: Scalability test on Only k-truss 76.12+¢1.20  50.9940.57  80.71x0.30  69.27
Module 2: Multi-Cohesion-Aware Embedding Fusion ing average degrees. RDT-T.
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Theoretical Analysis

Conclusion

Module 1: Topology Augmentation Enhancement . N
* Probabilistic Topology Augmentation Theorem 4.3. Suppose f is a minimal sufficient encoder. | || ° We propose CTAug, to .
* reduce the probability of node/edge dropping F1(G"; G5 y) increases, I(f(G); y) will also increase. '.”:O"tl‘l’;"':’te clohesmn prop:r:{es
- - into the topology augmentation
opera.tlf)n.s on cohesive subgraph.s * Cohesive properties are closely tied to graph label y and graph learning processes of
’ Determmllstlc Topolcr)]gy Auimenta’cl:or:j )  Preserve more cohesive properties of the original GCL, which can be applied to
* assign larger weights to the graph edges in cohesive h : : : ’
e graph G during graph augmentation — retain more various existing GCL mechanisms
wouid Favor the large-welghted edges. information related to y for embedding > increase || . our framework provides a
downstream task performance -
Module 2: Graph Learning Enhancement - P N general approach for generating
» Subgraph-aware GNN encoder Theorem 4.4. Let f; represent our proposed O-GSN augmented graphs guided by
» MPNNs have been proven to be limited in capturing encoder with k-.core (k. > 2) or k-truss (k = 3) prlo:.' knowledge ofsub.structures
subgraph properties, e.g., counting substructures subgraphs considered in subgraph structures H, and let applicable to any domain.
f> denote GIN (the default encoder). After sufficient

° GSN AGG ((hvl hu: Svl Su)ue]\f(v))
* To improve efficiency and tracking of original graph,

we propose O-GSN: AGG ((hv, h,,s9, sﬁ)ueN(v))

 Multi-Cohesion Embedding Fusion

training of f; and f,, I(f1(G); ¥) > I1(f2(G); ¥). y

e Substitute the default GIN encoder with O-GSN g
encoder - empower the encoder to preserve more S
information associated with y — boost the iR
performance of downstream tasks

* concatenate embeddings: z; = ||ceczf
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