Research Track ΠE CONFERENCE

Graph Algorithms and Modeling for the Web

Graph Contrastive Learning with Cohesive Subgraph Awareness

Yucheng Wu¹, Leye Wang¹*, Xiao Han²*, Han-Jia Ye³

¹Peking University, ²Shanghai University of Finance and Economics, ³Nanjing University, *Corresponding authors

Introduction

1. Graph Contrastive Learning (GCL) has emerged as a promising self-supervised learning paradigm for obtaining graph/node embeddings in various applications.

- **3.** Basic idea: introduce cohesive subgraphs to guide topology augmentations
- Cohesive subgraph is a widely prevalent and significant substructure with crucial applications in various fields.

- **k-core:** every node has at least k links to the

2. Shortcomings of existing augmentation strategies: randomly deleting important edges/nodes may cause the augmented views to vary far away from the original graph, thus degrading the learned graph/node embedding.

4. Research questions

- **Property Enrichment.** Can we enrich the topology augmentation with more essential graph properties to improve GCL?
- Unified framework. Can we design a unified framework that incorporates graph properties into various GCL methods?
- **Expressive Networks.** Most existing GCL methods use GNNs as encoders, but GNNs encounter difficulties in capturing subgraph properties. Can we design a more expressive graph encoder that can capture subgraph information effectively?

CTAug Framework

Experiments		Table 2: Accuracy (%) on graph classification (OOM: out-of-memory).								
Method	Social Graphs (High Degree)				Social Graphs (Low Degree)			Biomedical Graphs		
	IMDB-B	IMDB-M	COLLAB	AVG.	RDT-B	RDT-T	AVG.	ENZYMES	PROTEINS	AVG.
InfoGraph	71.34±0.24	47.93±0.71	69.12±0.15	62.80	89.39±1.81	76.23±0.00	82.81	26.73±3.75	74.09 ± 0.48	50.41
AD-GCL	71.28 ± 1.10	47.59 ± 0.62	71.22 ± 0.89	63.36	88.84 ± 0.90	76.51 ± 0.00	82.68	27.33 ± 2.28	73.39 ± 0.85	50.36
AutoGCL	71.14 ± 0.71	48.61±0.55	67.27 ± 2.64	62.34	89.31±1.48	77.13 ± 0.00	83.22	29.83 ± 2.24	73.33 ± 0.27	51.58
RGCL	71.14 ± 0.64	48.28 ± 0.60	73.48 ± 0.93	64.30	91.38 ± 0.40	OOM	/	33.33 ± 1.61	73.37 ± 0.35	53.35
SimGRACE	71.44 ± 0.28	48.81 ± 0.92	69.07 ± 0.24	63.11	86.65±1.12	76.64 ± 0.01	81.65	31.37±1.59	73.42 ± 0.37	52.40

Module 1: Topology Augmentation Enhancement

Probabilistic Topology Augmentation

 reduce the probability of node/edge dropping operations on cohesive subgraphs

Cohesive properties are closely tied to graph label y

Deterministic Topology Augmentation

• assign larger weights to the graph edges in cohesive subgraphs so that the graph diffusion process would favor the large-weighted edges

Module 2: Graph Learning Enhancement

• Subgraph-aware GNN encoder

- MPNNs have been proven to be limited in capturing subgraph properties, e.g., counting substructures • GSN: $AGG((h_v, h_u, s_v, s_u)_{u \in \mathcal{N}(v)})$ To improve efficiency and tracking of original graph,
- we propose O-GSN: $AGG((h_v, h_u, s_v^o, s_u^o)_{u \in \mathcal{N}(v)})$

Multi-Cohesion Embedding Fusion

• concatenate embeddings: $z_i = ||_{c \in \mathbb{C}} z_i^c$

Preserve more cohesive properties of the original graph G during graph augmentation \rightarrow retain more information related to y for embedding \rightarrow increase downstream task performance

Theorem 4.4. Let f_1 represent our proposed O-GSN encoder with k-core ($k \ge 2$) or k-truss ($k \ge 3$) subgraphs considered in subgraph structures ${\mathcal H}$, and let f_2 denote GIN (the default encoder). After sufficient training of f_1 and f_2 , $I(f_1(G); y) > I(f_2(G); y)$.

Substitute the default GIN encoder with O-GSN encoder \rightarrow empower the encoder to preserve more information associated with $y \rightarrow$ boost the performance of downstream tasks

and graph learning processes of **GCL**, which can be applied to various existing GCL mechanisms. Our framework provides *a* general approach for generating augmented graphs guided by prior knowledge of substructures applicable to any domain.

into the topology augmentation

Paper

Code