

1

Efficient User Sequence Learning for Online Services via Compressed Graph Neural Networks

Yucheng Wu12, Liyue Chen12, Yu Cheng³, Shuai Chen³, Jinyu Xu³, Leye Wang¹²

Key Lab of High Confidence Software Technologies (Peking University), Ministry of Education, Beijing, China School of Computer Science, Peking University, Beijing, China Alipay (Hangzhou) Information & Technology Co. Ltd., Hangzhou, China

Background

- **User sequences data** record user online activities over time
	- An example of user behavior sequence for online shopping:

• **Sequence representation learning**

- Step 1: map user sequences into embedding vectors using deep learning models
- Step 2: conduct predictions
- rely solely on an individual user's historical behavior sequences
- overlook information inherent in other relevant sequences
- **GNN-based sequence representation learning**
	- leverage similar sequences from other users and model their correlations

Motivation

- **Efficiency and scalability challenges** for deploying GNN-based models to *online services*:
	- **Training**: the number of user sequences produced by online applications is often immense, potentially escalating to the magnitude of millions \rightarrow large-scale graphs incur substantial computational and memory burdens
	- **Inference**: online services typically require rapid response → puts stringent demands on the algorithms' inference efficiency.

Basic idea

- we question the necessity of modeling all user sequences as nodes in GNNs
- $\bullet \rightarrow$ select a representative node subset
- **Solution**: compress the graph by reducing nodes and edges prior to GNN model training, benefiting computational efficiency

Contributions

- We propose ECSeq, a unified user sequence learning framework for online services, to *incorporate the relations between target and similar sequences*. ECSeq enhances efficiency and scalability via **graph compression**, thus resolving the dilemma of relation modeling on large-scale sequence data and online inference with low latency.
- We compare and adapt suitable graph compression techniques for ECSeq, meeting **efficiency**, **interpretability**, and **sample balancing** demands simultaneously. Besides, ECSeq is designed to hold *plug-and-play* characteristics, seamlessly augmenting pre-trained sequence representation models in existing systems without the need to modify these models.
	- Interpretability: Graph compression provides representative sequence prototypes, offering interpretable cases of model outputs.
	- Sample Balancing: In biased distributions (e.g., fraud detection), compression can balance categories by setting similar compressed node counts.

Framework

- Firstly, the sequence embedding extraction module transforms sequence information into a one-dimensional feature vector.
- Then, the sequence relation modeling module explores and leverages relationships among sequences to enhance the sequence representation, employing an appropriate graph compression technique to mitigate computational overhead and improve inference efficiency.
Efficient User Sequence Learning for Online Services via Compressed Graph Neural Networks

Sequence Embedding Extraction

Field, Event, and Sequence

A user behavior sequence example example example example website_language consists of three events and each event has several fields.

Sequence Embedding Extraction

- capture a user's sequence representation by taking into account both field-level characteristics and event-level sequential patterns over time.
- transforms sequence information into a one-dimensional feature vector.
 $\begin{array}{ccc}\n & \text{events of sequence } E_i\n\end{array}$

Sequence Relation Modeling

Sequence Relation Modeling

- leverages relationships among sequences to enhance the sequence representation, employing an appropriate graph compression technique to mitigate computational overhead and improve inference efficiency.
- **1. Graph Construction:** we regard users' sequences as nodes to construct a relationship graph, and we can infer node connectivity based on attribute similarity.
- **2. Graph Compression:** we aim to reduce the number of nodes or edges while maintaining model performance *ficient* User Sequence Learning for Online Services via Compressed Graph Neural Networks
Craph **Bradiction:** we extract pode representations of the sempreseed relation araph and make
- **3. Graph Prediction:** we extract node representations of the compressed relation graph and make

Graph Compression

TABLE I: Summary of typical graph compression methods. N: number of nodes, M : number of edges, D : dimension of node features, K : number of clusters/compressed nodes, c: some absolute constant. *Traceable*: whether the source of the compressed nodes is known; *Configurable*: whether the compression method can assign separate compressed node quantities for each category.

Fig. 3: Illustration of diverse graph compression methods.

- Coreset Selection expedites training by selecting or synthesizing a subset of representative nodes.
- **Graph Coarsening** combines original nodes into super-nodes and establishes their connections.
- **Graph Sparsification** reduces the number of edges in a graph by approximating its structural properties.

without alignment concerns. ⁹ *Efficient User Sequence Learning for Online Services via Compressed Graph Neural Networks*

Experiments

- FD1/FD2: consist of real-world online card transaction sequences from a global e commerce company.
- Bike: forecasts the number of bike-sharing demands at each station.
- Speed: contains traffic speed data from the Bay Area.

Baselines:

- *Methods with only features of the target event:* Regression and GBDT take features extracted by the field-level extractor of the target event as inputs to train a machine-learning classifier.
- *Methods with deep neural networks to extract historical information:* LSTM can capture long-term dependencies for sequential data, then we give the prediction by MLP layers, while R-Transformer combines RNNs and the multi-head attention mechanism.
- *Methods with GNN to capture sequence relationship:* GRASP enhances representation learning by leveraging knowledge extracted from similar users within the same batch, which is originally proposed for healthcare sequence classification problems.

Experimental Results -- Effectiveness

TABLE IV: Experimental results on fraud detection and user mobility tasks. The best results are highlighted in bold. While *R-Transformer* [48] and *GRASP* [7] are primarily intended for classification tasks, they do not show comparable performance on user mobility tasks.

- Compared to Regression and GBDT that only use features of target event, LSTM and R-Transformer extract historical information of sequences, and have significant improvement in all datasets.
- ECSeq further enhances LSTM by exploring and utilizing the relationships among sequences, and ECSeq gains the best performance in all of the four datasets.

Experimental Results -- Efficiency and Scalability

TABLE V: Fraud detection performance and computation time on FD1, whose training set contains 145,236 sequences, *i.e.*, 145,236 original nodes when modeling the relation. We train the GNN for 50 epochs.

Methods	#Nodes	AUPRC (\uparrow)	R@P _{0.9} (Compression Time (s) (\downarrow)	GNN Training Time (s) (\downarrow)	Inference Time $(10^{-4} \text{ s/sample}) (\downarrow)$	GPU Memory Usage (GB) (\downarrow)
LSTM	$\qquad \qquad$	0.8332 ± 0.0047	0.5840 ± 0.0132	$-$	$\overline{}$	0.286	$\overline{}$
ECSeq	100 500 000,1 5,000	0.8377 ± 0.0023 0.8383 ± 0.0018 0.8372 ± 0.0021 0.8343 ± 0.0013	0.6111 ± 0.0077 0.6153 ± 0.0079 0.6115 ± 0.0083 0.6056 ± 0.0055	5.318 15.444 36.686 137.570	9.950 9.955 10.480 28.930	0.614 0.618 0.622 0.630	1.306 1.664 2.283 7.037
batch GNN full graph GNN	145,236 (1,000/batch) 145,236	0.8335 ± 0.0017	6.414 10.675 2.243 0.5861 ± 0.0157 Out-of-Memory				

- Training GNN on the full graph would result in an out-of-memory issue on our GPU with 11 GB RAM.
- However, by using graph compression, we can achieve satisfactory performance improvement (∼ 5% increase in R@P_{0.9}) while using only around 1GB of GPU RAM (100 compressed nodes).
- When compressing the original graph to 100 nodes using k-means, the time consumption, including both compression and GNN training, is only 15.3 seconds. The inference time consumption is still at the 10−5 second scale per sequence, similar to LSTM.
- These results demonstrate the practicality of using ECSeq in real systems.

Experimental Results -- Flexibility

TABLE VI: Performance of *ECSeq* variants on *FD2* and *Bike. R-Transformer* cannot converge on *Bike*, so we do not report the results.

- We conduct experiments to evaluate the flexibility of ECSeq framework in modifying sequence embedding extractors, graph compression methods, and GNN algorithms.
- When either LSTM or R-Transformer is used as the sequence embedding extractor, applying ECSeq can greatly enhance prediction performance. The plug-and-play characteristics of ECSeq can flexibly enhance existing sequential modeling models that do not account for sequence relations.
- Results show that different variants may have varying performance on different tasks. The flexibility of ECSeq allows us to easily change the compression and GNN algorithms.

Conclusion and Limitation

Conclusion

- Our proposed framework, named ECSeq, aims to improve user behavior sequence learning by *integrating sequence relations*, while maintaining **high efficiency and scalability** for applicability in online services.
- The framework consists of two modules: **sequence embedding extraction** and **sequence relation modeling**, which enhances training and inference efficiency and provides a plug-and-play capability.
- Specifically, with an extra training time of tens of seconds in total on 100,000+ sequences and inference time maintained within 10^{−4} seconds/sample, ECSeq enhances the prediction R@P_{0.9} of the widely used LSTM by ∼ 5%.

Limitation

- Currently, ECSeq has a limitation where it can only deal with one type of relation. We aim to simultaneously **incorporate more types of real-life relationships**, such as users' social networks and behavioral habits similarity, into our framework in the future.
- We believe that the integration of different relationships can greatly enhance the relation modeling module. Our next step is thus to explore how to effectively and efficiently incorporate

heterogeneous relationships. ¹⁴ *Efficient User Sequence Learning for Online Services via Compressed Graph Neural Networks*

Thanks!

Contact: wuyucheng@stu.pku.edu.cn

Paper **Code** 15