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o ¥ R4 (Sparse sensing)
e Sparse Mobile Crowdsensing: Challenges and Opportunities (IEEE Communications Magazine, 2016)
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Challenges and Opportunltles

Leye Wang, Daqing Zhang, Yasha Wang, Chao Chen, Xiao Han, and Abdallah M’hamed

ABSTRACT

Sensing cost and data quality are two primary
concerns in mobile crowdsensing. In this article,
we propose a new crowdsensing paradigm, sparse
mobile crowdsensing, which leverages the spatial
and temporal correlation among the data sensed
in different sub-areas to significantly reduce the
required number of sensing tasks allocated, thus
lowering overall sensing cost (e.g., smartphone
energy consumption and incentives) while ensur-
ing data quality. Sparse mobile crowdsensing
applications intelligently select only a small por-
tion of the target area for sensing while infer-
ring the data of the remaining unsensed arca
with high accuracy. We discuss the fundamen-
tal research challenges in sparse mobile crowd-
sensing, and design a general framework with
potential solutions to the challenges. To verify
the effectiveness of the proposed framework, a
sparse mobile crowdsensing prototype for tem-
perature and traffic monitoring is implement-
ed and evaluated. With several future research
directions identified in sparse mobile crowdsens-
ing, we expect that more research interests will
be stimulated in this novel crowdsensing para-
digm.

urban data in regions that are not covered by the
specialized sensing infrastructure.

To obtain high-quality sensed results in MCS
applications, a straightforward idea is to recruit
enough participants so as to ensure that their
sensed data can cover almost the whole target
area. Nevertheless, this strategy may incur high
sensing cost, including overall smartphone ener-
gy and network bandwidth consumption, as well
as incentives paid to the participants by the orga-
nizer.

Thus, data quality and sensing cost have certain
intrinsic conflicts in MCS. A lot of existing studies
have endeavored to address this issue by minimiz-
ing the redundant number of allocated tasks (or
recruited participants) under the quality require-
ment of full or high coverage of all the sub-areas
in a city [1, 2]. However, the number of allocated
tasks in these studies should be roughly equiva-
lent to the total number of sub-areas, which may
still incur very high sensing cost. Then a question
arises: is it possible to further reduce the sensing
cost by only sensing a small number of sub-areas
while still guaranteeing a satisfactory level of data
quality for the whole target area? To answer this ques-
tion, we investigate a novel MCS paradigm where
only a small part of city sub-areas are sensed by par-

Sensing cost and data
quality are two primary
concerns in mobile
crowdsensing. The
authors propose a new
crowdsensing paradigm,
sparse mobile crowd-
sensing, which leverages
the spatial and temporal
correlation among the
data sensed in different
sub-areas to significantly
reduce the required
number of sensing tasks
allocated, thus lowering
overall sensing cost while
ensuring data quality.
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Introduction

* Background: With the prevalence of rich-sensor equipped smartphones in recent years, mobile
crowdsensing (MCS) has become a promising paradigm to facilitate urban sensing applications, such as
environment monitoring, traffic congestion detection, hotspot identification, and public information sharing.

Nevertheless, this strategy may incur
high sensing cost, including overall
<:::> smartphone energy and network

bandwidth consumption, as well as
incentives paid to the participants by
the organizer.

To obtain high-quality sensed results

in MCS applications, a straightforward
idea is to recruit enough participants
so as to ensure that their sensed data
can cover almost the whole target area.

* Question: is it possible to further reduce the sensing cost by only sensing a small number of sub-areas while
still guaranteeing a satisfactory level of data quality for the whole target area?
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Overview of mobile crowdsensing process

* A novel MCS paradigm —— Sparse MCS: only a small part of city sub-areas are sensed by participants, while
the data of the rest of the sub-areas are inferred based on the sensed data.

* Theoretical feasibility: high spatio-temporal correlations exist in most urban data (e.g., air quality and noise).
Such correlations provide the basis for high-quality missing data inference. Specifically, recent research

progress in missing data inference algorithms, such as compressive sensing, could facilitate Sparse MCS to
achieve high inferred data quality.

O Task assignment/individual task execution ! : &
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Figure 1. Overview of the mobile crowdsensing process. A cube is used to illustrate the complete set of
all possible individual tasks, where each individual task is specified by a spatio-temporal cell (a spe-
cific sub-area in a specific cycle). Two dimensions (X and Y) of the cube represent the spatial space

. . 20
(sub-areas), and the other dimension (Z) represents the temporal space (cycles).



Key research challenges

* Missing data inference: Given a set of sensed data from the sparsely selected spatio-temporal cells, how do
we infer the missing data of the remaining unsensed cells with high accuracy?

» Different inference approaches have their own characteristics and applicable use cases; thus, the best
inference algorithm may be different for heterogeneous Sparse MCS applications that have different
data types, data sizes, and inherent correlations.

e Optimal task allocation: Given an inference algorithm, how do we select the optimal combination of spatio-
temporal cells for task allocation so that the sensing cost is minimized with guaranteed inferred data quality?
e different combinations of spatio-temporal cells will incur diverse inferred data quality and sensing cost.

e the task allocation is a monotonic and unregrettable process —— if we have allocated tasks to some
cells and collected the data, even if we find that the collected data is not efficient for improving the
overall data quality, the allocation cannot be retracted to alter the previous decision.

* we need to consider user mobility in task allocation to determine whether the selected cell can be
covered by any participant or not
e Data quality assessment: Given a set of sensed spatio-temporal cells and an inference algorithm, how do we
assess the inferred data quality without knowing the ground truth data values of unsensed cells?
* the lack of the ground truth data of unsensed cells.
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General framework for Sparse MCS
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Figure 2. General framework for Sparse MCS applications in one sensing
cycle.

e Missing data inference

e compressive sensing, dynamic Bayesian network
and Gaussian process regression

* exploiting additional knowledge
* multi-source data fusion algorithm

e Optimal task allocation

e estimate the inference uncertainty of each
unsensed cell

* Query by committee: applies various algorithms
to infer the value of an unsensed cell, and then
calculates the variance among these inferred
values as the uncertainty for that cell

e the largest uncertainty is then selected as the
next cell for sensing

e Data quality assessment

e statistical techniques: re-sampling methods
such as leave-one-out or bootstrap

* the estimated inference error is the difference
between the current-cycle inferred data and the

last-cycle sensed data )
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