GNN Deployment with High Efficiency

Yucheng Wu
2024/4/12



Contents

e GNN for online services

» Efficient User Sequence Learning for Online Services via Compressed Graph Neural Networks

* GNN for edge computing

* GNN at the Edge: Cost-Efficient Graph Neural Network Processing over Distributed Edge

Servers (IEEE Journal on Selected Areas in Communications, 2023)



GNN for online services

Efficient User Sequence Learning for Online
Services via Compressed Graph Neural Networks

Anonymous Author(s)
Affiliation
Address
Email

Abstract—Learning representations of user behavior sequences
is crucial for various online services, such as online fraudu-
lent transaction detection mechanisms. Graph Neural Networks
(GNNs) have been extensively applied to model sequence rela-
tionships, and extract information from similar sequences. While
user behavior sequence data volume is usually huge for online ap-
plications, directly applying GNN models may lead to substantial
computational overhead during both the training and inference
stages and make it challenging to meet real-time requirements
for online services. In this paper, we leverage graph compression
techniques to alleviate the efficiency issue. Specifically, we propose
a novel unified framework called ECSeq, to introduce graph
compression techniques into relation modeling for user sequence
representation learning. The key module of ECSeq is sequence
relation modeling, which explores relationships among sequences
to enhance sequence representation learning, and employs graph
compression algorithms to achieve high efficiency and scalability.
ECSeq also exhibits plug-and-play characteristics, seamlessly
augmenting pre-trained sequence representation models without
modifications. Empirical experiments on both sequence classifica-
tion and regression tasks demonstrate the effectiveness of ECSeq.
Specifically, with an additional training time of tens of seconds in
total on 100,000+ sequences and inference time preserved within
10~* seconds/sample, ECSeq improves the prediction R@Pg 9 of
the widely used LSTM by ~ 5%.

Index Terms—Sequence Representation Learning, Graph Neu-
ral Network, Graph Compression, Online Inference
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Fig. 1: Up: A user behavior sequence example consists of three
events and each event has several fields. Down: An example
of user behavior sequence for online shopping.

proposed to capture correlations among similar sequences for
online user behavior modeling [9].

However, most GNN-based sequence representation meth-
ods still face challenges with efficiency and scalability [10] for
online services. The number of user sequences produced by
online applications is often immense, potentially escalating to
the magnitude of millions [11], which results in relation graphs
with millions of nodes and edges. For GNN training, such
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Fig. 1: Up: A user behavior sequence example consists of three
events and each event has several fields. Down: An example
of user behavior sequence for online shopping.

 GNN-based sequence representation learning
* leverage similar sequences from other users and model their correlations

* Shortcomings when deploy GNN-based models to online services:

* Training: the number of user sequences produced by online applications is often immense, potentially

escalating to the magnitude of millions — large-scale graphs incur substantial computational and
memory burdens

* Inference: online services typically require rapid response — puts stringent demands on the algorithms’
inference efficiency.



Introduction

Basic idea
* we question the necessity of modeling all user sequences as nodes in GNNs
* — select a representative node subset

e Solution: compress the graph by reducing nodes and edges prior to GNN model training, benefiting
computational efficiency

Other advantages

* Case-based Reasoning
* Graph compression provides representative sequence prototypes, offering interpretable cases of model
outputs.
e Sample Balancing

* In biased distributions (e.g., fraud detection), compression can balance categories by setting similar
compressed node counts.
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Fig. 2: Overview of ECSeq. Firstly, the sequence embedding extraction module meticulously transforms sequence information
into a one-dimensional feature vector. Then, the sequence relation modeling module explores and leverages relationships

among sequences to enhance the sequence representation, employing an appropriate graph compression technique to mitigate
computational overhead and improve inference efficiency.
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* Graph Compression

TABLE I: Summary of typical graph compression methods. N: number of nodes, M:
number of edges, D: dimension of node features, K: number of clusters/compressed
nodes, c: some absolute constant. Traceable: whether the source of the compressed nodes
is known; Configurable: whether the compression method can assign separate compressed
node quantities for each category.
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Overall Workflow

Algorithm 1: ECSeq Training Procedure

>R B L7 B N JS T ]

Input: Sequence set E and its label matrix Y
Output: Optimized sequence embedding extractor
(M, M.), optimized relation model (M,
Fgnn), and the compressed graph G.
Initialize parameters of sequence embedding extractor
My, M., and Fieq;
while stopping condition is not met do
H = M (M(E)), Y = Fuey(H):
Compute the loss L., by Eq. H;
Update the parameters of M, M., and Ficq;
end
Treat sequences as nodes with X = H;
Construct node connections and get relation graph

g =(AX);

Algorithm 2: ECSeq Inference Procedure

Input: Optimized sequence embedding extractor (M,
M), optimized relation model (M4, Fynn),
the compressed graph G, and a set of new
sequences E”

Output: The predicted label Y of the new sequences.

1 Get new sequence embedding H"” = M.(M(E"));
2 Treat new sequences as nodes with X" = H”;
3 Establish connections between X" and X', denoted as
A//;
4 Derive inference results
Y = Fonn(Mg(A”, X" U X));

Compress G to get the compressed graph G = (.%i, X )
and label V;
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21

Initialize parameters of relation model M, and Fg,,p;
while stopping condition is not met do
Y= -ann(Mg(A’ X))’
Compute the loss L., by Eq. ;
Update the parameters of M, and F,,,;
end
Establish connections between X and X , denoted as
A’
while stopping condition is not met do
Y = Fynn(My(A, X U X));
Compute the loss L., by Eq. ;
Update the parameters of M, and F;,,;
end

Our step-wise approach has advantages over

end-to-end training:

*  Graph compression is only needed once,
mitigating instability and inefficiency;

e Both modules’ training processes
incorporate label information supervision,
ensuring the models’ stability and
optimality;

* Decoupled optimization enables flexibility
in using diverse models without alignment
concerns.



Experiments
TABLE II: Statistics of datasets.

Datasets:
Fraud Detection
Datasets #Fields #Events #Sequences #Positive Samples
FD1 236 2:130.962 245,045 24,489 (9.99%)
FD2 178 275,322 15,366 777 (5.06%)
User Mobility

Datasets  #Sensors  #Timesteps  Time Interval Value Range
Bike 717 1,488 60 minutes 0.0 ~ 108.0
Speed 325 1,488 60 minutes 3.1..55:83.2

Baselines:

* Methods with only features of the target event: Regression and GBDT take features extracted by the field-
level extractor of the target event as inputs to train a machine-learning classifier.

* Methods with deep neural networks to extract historical information: LSTM can capture long-term
dependencies for sequential data, then we give the prediction by MLP layers, while R-Transformer combines
RNNs and the multi-head attention mechanism.

* Methods with GNN to capture sequence relationship: GRASP enhances representation learning by leveraging
knowledge extracted from similar users within the same batch, which is originally proposed for healthcare
sequence classification problems.



Experiments

TABLE 1V: Experimental results on fraud detection and user mobility tasks. The best results are highlighted in bold. While
R-Transformer [48)] and GRASP [}] are primarily intended for classification tasks, they do not show comparable performance
on user mobility tasks.

Method FD1 FD2 Bike Speed
ethods

AUPRC (1) R@Pp.9 (1) AUPRC (1) R@Pp.9 (1) RMSE (|) sMAPE () RMSE () sMAPE ()
Non-Graph Methods
Regression 0.7685+£0.0000  0.4890£0.0000  0.5271+0.0000  0.3052+0.0000  2.8169+0.0000  0.2148+0.0000  6.3994+0.0000  0.0672+0.0000
GBDT 0.7742+£0.0000  0.5244+0.0000  0.6147+0.0006  0.3766+0.0000  2.7596+0.0077  0.2063+0.0008  6.2964+0.0575  0.0632+0.0005
LSTM 0.8332+0.0047  0.5840£0.0132  0.7124+0.0076  0.6987+0.0078  1.5463+0.0504  0.1782+0.0040  4.8383+0.1600  0.0561+0.0011
R-Transformer  0.8338+0.0040  0.5847+0.0289  0.7064+0.0149  0.5403%0.1951 - - - -
Graph Methods
GRASP 0.8362+0.0037  0.6049+0.0230  0.7138+0.0353  0.6776+0.0420 - - - -
ECSeq 0.8383+0.0018  0.6153+0.0079  0.7249+0.0112  0.7039+0.0032  1.4832+0.0209 0.1766+0.0038  4.4362+0.1015  0.0542+0.0012




Experiments

TABLE V: Fraud detection performance and computation time on FDI, whose training set contains 145,236 sequences, i.e.,
145,236 original nodes when modeling the relation. We train the GNN for 50 epochs.

AUPRC R@Py .9 Compression ~ GNN Training Inference Time GPU Memory
M #Nodes . . e
ethods odes ™) ™) Time (s) (1) Time (s) (1) (10~ s/sample) (1)  Usage (GB) (1)
LST™M - 0.8332+0.0047  0.5840+0.0132 - — 0.286 -
100 0.8377+0.0023  0.6111+0.0077 5.318 9.950 0.614 1.306
ECS 500 0.8383+0.0018  0.6153+0.0079 15.444 9.955 0.618 1.664
¢4 1,000 0.8372+0.0021  0.6115+0.0083 36.686 10.480 0.622 2:283
5,000 0.8343+0.0013  0.6056+0.0055 137.570 28.930 0.630 7:037
batch GNN 145,236 (1,000/batch)  0.8335+0.0017  0.5861+0.0157 - 10.675 2.243 6.414
Sull graph GNN 145,236 Out-of-Memory

TABLE VI: Performance of ECSeq variants on FD2 and Bike. R-Transformer cannot converge on Bike, so we do not report

the results.

Sequence Embedding  Graph Compression GNN Model FD2 Bike
Extractor Algorithm AUPRC (1) R@Pg.9 (1) RMSE () sMAPE ()
Sequence Model LSTM - - 0.7124+£0.0076  0.6987+0.0078  1.5463+0.0504  0.1782+0.0040
w.o. Graphs R-Transformer - - 0.7064+£0.0149  0.5403%0.1951 - -
LSTM k-means GraphSAGE (Mean)  0.7249+0.0112  0.7039+0.0032  1.4832+0.0209  0.1766+0.0038
R-Transformer k-means GraphSAGE (Mean) 0.7105+0.0184  0.6991+0.0031 - -
LSTM AGC GraphSAGE (Mean)  0.7232+0.0102  0.6935+£0.0095  1.4792+0.0218  0.1764+0.0044
ECS LSTM Grain GraphSAGE (Mean)  0.7232+0.0102  0.6870+0.0095  1.4949+0.0219  0.1812+0.0050
“q LSTM RSA GraphSAGE (Mean)  0.7201£0.0091  0.6922+0.0120  1.4812+0.0190  0.1761+0.0040
LSTM k-means GraphSAGE (Max)  0.7162+0.0083  0.7026+0.0049  1.4846+0.0166  0.1768+0.0037
LSTM k-means GCN 0.7212+£0.0102  0.6987+0.0052  1.9226+0.0376  0.2139+0.0059
LSTM k-means GAT 0.7200+£0.0112  0.7026+0.0026 ~ 2.0056+£0.0107  0.2383+0.0053




Experiments

TABLE VII: The new sequences of fraudulent behavior and their corresponding representative sequences with the closest
relation (i.e., the highest cosine similarity of sequence embedding). Events are arranged from left to right in chronological
order, and the underlined elements are the target events. RouterMac: the mac address of users’ devices; Item: the category of
goods; CardType: the type of payment card (e.g. credit card); Country: the transaction location.

Fields | New Sequences (Fraud) |  Representative Sequences with the Closest Relation
) RouterMac | MACI MACI1 MACI1 MACI1 MAC2 | MAC3 MAC3 MAC4 MAC3 MAC2
Amount | 242 484 242 242 5634 | 429 529 6 129 5478
(b) Item | I1 I1 I1 I1 3 | 12 I1 I1 I1 3
Time | 7:43PM 621 PM  8:10PM 10:41 PM  3:05 AM | 8:57PM 521 PM 534 PM  9:01 PM  2:06 AM
© Country | Cl1 C2 Cl1 Cl1 C3 | Cl1 Cl1 C4 Cl1 C3
CardType | TYPEI TYPEI1 TYPEI TYPE2 TYPE3 | TYPEI TYPE2 TYPEI TYPEI TYPE3

——AUPRC -=-R@P ——AUPRC -=-R@P
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Fig. 4: Fraud detection performance of ECSeq under varying settings of positive compressed node ratio.
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GNN at the Edge: Cost-Efficient Graph Neural
Network Processing over Distributed Edge Servers

Liekang Zeng, Chongyu Yang, Peng Huang, Zhi Zhou, Shuai Yu, and Xu Chen

Abstract—Edge intelligence has arisen as a promising comput-
ing paradigm for supporting miscellaneous smart applications
that rely on machine learning techniques. While the community
has extensively investigated multi-tier edge deployment for tra-
ditional deep learning models (e.g. CNNs, RNNs), the emerging
Graph Neural Networks (GNNs) are still under exploration,
presenting a stark disparity to its broad edge adoptions such
as traffic flow forecasting and location-based social recommen-
dation. To bridge this gap, this paper formally studies the
cost optimization for distributed GNN processing over a multi-
tier heterogeneous edge network. We build a comprehensive
modeling framework that can capture a variety of different cost
factors, based on which we formulate a cost-efficient graph layout
optimization problem that is proved to be NP-hard. Instead of
trivially applying traditional data placement wisdom, we theoret-
ically reveal the structural property of quadratic submodularity
implicated in GNN’s unique computing pattern, which motivates
our design of an efficient iterative solution exploiting graph
cuts. Rigorous analysis shows that it provides parameterized
constant approximation ratio, guaranteed convergence, and exact
feasibility. To tackle potential graph topological evolution in GNN
processing, we further devise an incremental update strategy and
an adaptive scheduling algorithm for lightweight dynamic layout
optimization. Evaluations with real-world datasets and various
GNN benchmarks demonstrate that our approach achieves supe-
rior performance over de facto baselines with more than 95.8%
cost reduction in a fast convergence speed.

Index Terms—Edge intelligence, Graph Neural Networks, cost
optimization, distributed edge computing.
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Fig. 1. A multi-tier edge network architecture comprising device layer, access
point (AP) layer, and edge layer. The clients with connections form a data
graph (e.g., social web), while each node in the edge network covers a range of
users. The edge servers perform distributed GNN processing by parallelizing
model execution and exchanging data mutually, in order to infer targeted graph
properties (e.g., predicting potential social relationships).

techniques with convolution to collectively aggregate infor-
mation from nodes and their dependencies, enabling capturing
hierarchical patterns from subgraphs of variable sizes. Bene-
fited from such advanced ability in modeling graph structures,
GNNs have been recently employed in miscellaneous graph-
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Introduction

* While traditional deep learning models (e.g.
CNNs, RNNs) accept inputs from each
individual client independently, processing
GNNs at the network edge can span over
distributed edge servers geographically, due to
the dispersed nature of graph data.

* When a GNN inference query is raised, each
edge server

» first aggregates a subset of the graph
data via APs in certain areas

* next launches a distributed runtime to
compute the embeddings through the
given GNN model
(During the runtime, the edge servers are
orchestrated in a collaborative manner,
exchanging necessary graph data with
each other)

Edge Layer

e

Edge Server

Base Station

Client

gl Input Graph
of GNN

Fig. 1. A multi-tier edge network architecture comprising device layer, access
point (AP) layer, and edge layer. The clients with connections form a data
graph (e.g., social web), while each node in the edge network covers a range of
users. The edge servers perform distributed GNN processing by parallelizing
model execution and exchanging data mutually, in order to infer targeted graph
properties (e.g., predicting potential social relationships).



Introduction

» Existing works on edge-enabled distributed intelligence:
» offload computation with external infrastructures
e partition model execution across edge servers

e Shortcoming: assume single-point input and an independent serving style between one client and one edge
server, which fits CNNs and RNNs but is inapplicable for GNNs.

Contribution

* Formulate a system cost optimization problem
» for Distributed GNN Processing over heterogeneous Edge servers (DGPE)
* by building a novel modeling framework that generalizes to a wide variety of cost factors

* Theoretically reveal that the optimization problem’s objective function is pseudo-boolean quadratic and
submodular, based on which we propose an efficient algorithm leveraging graph-cuts techniques

* Develop an incremental graph layout improvement strategy to address the potential dynamic evolution of
GNN’s input data graph, and further design an adaptive scheduling algorithm to well balance the tradeoff
between graph layout update overhead and system performance



Related work

e Distributed GNN systems.

* Federated learning for GNN.
* DGPE significantly diverges from the FL category in that:

* 1) DGPE considers distributed GNN inference processing services with a variety of cost optimization
objectives, allowing attainable data sharing across edge servers, while FL focuses only on the GNN

model training and particularly stresses user privacy by physical data isolation.

» 2) DGPE targets a technically distinct execution mechanism from FL, where DGPE only touches the
distributed clients and edge servers, and processes GNN inference workload in parallel without the
orchestration of centralized cloud servers (as required by FL).

e Collaborative edge intelligence.

* Graph data placement.



System model

e System overview
* the edge network that hosts distributed model execution
* the data graph formed by clients’” associated data, which feeds the GNN model as the input graph
* We bridge them by further defining graph layout

Client AP Edge Server Edge Server
* Cost Factors /lfg{l?ad--
* Data collection (@)*W é
* GNN computation ) p
* Cross-edge traffic Hvi

. .
Edge server maintenance Fig. 3. Illustration of the data collection cost and cross-edge traffic cost for

a single client’s data.

* Cost-Efficient Graph Layout Optimization Problem

P: min C(7|T,G), (10)
s.t. Z Tpi=1,Yv €V, (10a)

1€D
Ty € {0,1},Yv € V,Vi € D, (10b)

= {xy|v € V,i € D}. (10¢)



Approximation algorithm design for static input graphs
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Fig. 4. Instance of graph-cut based graph layout optimization. Given an edge network and an input data graph (a), GLAD-S first initializes a graph layout
via random assignments (b). Next, it selects an arbitrary pair of edge servers and constructs an augment graph by connecting both edges to every vertex that
has been associated with one of them (c). Minimum s-¢ cut is then performed on the augment graph and obtained a set of graph cuts (d). Based on this cut
set, it builds a graph layout for the edge servers and the client inside the augment graph, where marked links indicate assignments (e). GLAD-S will pass the
obtained result to step (b) as the next iteration for finding a better graph layout until convergence.



Approximation algorithm design for static input graphs

Algorithm 1 GLAD-S: GLAD for Static input data graph
Input:
T The edge network (D, W)
G: The data graph (V, &)
C'(m): The system cost function for 7
R: The measurement of convergence
Output:
7: Optimized graph layout {z,;|v € V,i € D}
1: Initialize a randomized graph layout 7
2:2r+0
3: while r < R do
4:  Select a pair of connected edge servers (i, j) with the
minimum visited times
5. Construct an auxiliary graph A(i,7) w.rt. (i,7)
Solve the minimum s-t cut of A(%, j)
Build a graph layout 7’ according to Eq. (15) from the
obtained minimum cut set
8. if C(7") < C(m) then

: T
10: r<0
11:  else
12: r<nr+1
13:  end if

14: end while
15: return 7




Adaptive algorithm design for evolved input graphs

Algorithm 2 GLAD-E: GLAD for Evolved input data graph

Edge Server k InPUt:
Topological Changes T: The edge network
G(t — 1), G(t): The data graph at time slot ¢ — 1 and ¢
m(t — 1): The graph layout at time slot ¢ — 1
C'(m): The total cost function for a given 7
R: The measurement of convergence
Output:
- ) 7(t): Optimized graph layout at time slot ¢
1: Filter the vertices that are newly added or have new
neighbors at other edge servers from G(¢ — 1) and G(¢)
2: Construct a graph G with the filtered vertices and their

Fig. 5. Possible topological graphs on a data graph, where the clients (vertices) associated links .
have been placed to three edge servers. The changes include vertex insertion, 3 "« GLAD-S(T,G",C, R) _ D. Call Algorithm 1
vertex deletion, link insertion, and link deletion. 4: Extract the graph layout 7~ from existing layout (¢ — 1)
with respect to the unfiltered vertices
50 w(t) «— wt Um™
6: return 7(t)

e Vertex Insertion

{:}) Vertex Deletion

Edge Server j

Edge Server i
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