
GNN Deployment with High Efficiency

Yucheng Wu

2024/4/12



Contents

• GNN for online services

• Efficient User Sequence Learning for Online Services via Compressed Graph Neural Networks

• GNN for edge computing

• GNN at the Edge: Cost-Efficient Graph Neural Network Processing over Distributed Edge 

Servers (IEEE Journal on Selected Areas in Communications, 2023)



GNN for online services



Introduction

• Sequence representation learning
• map user sequences into embedding vectors
• conduct predictions

• GNN-based sequence representation learning
• leverage similar sequences from other users and model their correlations

• Shortcomings when deploy GNN-based models to online services:
• Training: the number of user sequences produced by online applications is often immense, potentially 

escalating to the magnitude of millions → large-scale graphs incur substantial computational and 
memory burdens

• Inference: online services typically require rapid response → puts stringent demands on the algorithms’ 
inference efficiency. 



Introduction

Basic idea

• we question the necessity of modeling all user sequences as nodes in GNNs

• → select a representative node subset

• Solution: compress the graph by reducing nodes and edges prior to GNN model training, benefiting 
computational efficiency

Other advantages

• Case-based Reasoning
• Graph compression provides representative sequence prototypes, offering interpretable cases of model 

outputs. 

• Sample Balancing
• In biased distributions (e.g., fraud detection), compression can balance categories by setting similar 

compressed node counts.



Method



Method

• Graph Compression



Method

• Overall Workflow

Our step-wise approach has advantages over 
end-to-end training: 
• Graph compression is only needed once, 

mitigating instability and inefficiency; 
• Both modules’ training processes 

incorporate label information supervision, 
ensuring the models’ stability and 
optimality; 

• Decoupled optimization enables flexibility 
in using diverse models without alignment 
concerns.



Experiments

Datasets:

Baselines:

• Methods with only features of the target event: Regression and GBDT take features extracted by the field-
level extractor of the target event as inputs to train a machine-learning classifier. 

• Methods with deep neural networks to extract historical information: LSTM can capture long-term 
dependencies for sequential data, then we give the prediction by MLP layers, while R-Transformer combines 
RNNs and the multi-head attention mechanism.

• Methods with GNN to capture sequence relationship: GRASP enhances representation learning by leveraging 
knowledge extracted from similar users within the same batch, which is originally proposed for healthcare 
sequence classification problems.



Experiments



Experiments



Experiments



GNN for edge computing



Introduction

• While traditional deep learning models (e.g. 
CNNs, RNNs) accept inputs from each 
individual client independently, processing 
GNNs at the network edge can span over 
distributed edge servers geographically, due to 
the dispersed nature of graph data. 

• When a GNN inference query is raised, each 
edge server 
• first aggregates a subset of the graph 

data via APs in certain areas
• next launches a distributed runtime to 

compute the embeddings through the 
given GNN model
(During the runtime, the edge servers are 
orchestrated in a collaborative manner, 
exchanging necessary graph data with 
each other)



Introduction

• Existing works on edge-enabled distributed intelligence:
• offload computation with external infrastructures 
• partition model execution across edge servers

• Shortcoming: assume single-point input and an independent serving style between one client and one edge 
server, which fits CNNs and RNNs but is inapplicable for GNNs.

Contribution

• Formulate a system cost optimization problem 
• for Distributed GNN Processing over heterogeneous Edge servers (DGPE)
• by building a novel modeling framework that generalizes to a wide variety of cost factors

• Theoretically reveal that the optimization problem’s objective function is pseudo-boolean quadratic and 
submodular, based on which we propose an efficient algorithm leveraging graph-cuts techniques

• Develop an incremental graph layout improvement strategy to address the potential dynamic evolution of 
GNN’s input data graph, and further design an adaptive scheduling algorithm to well balance the tradeoff 
between graph layout update overhead and system performance



Related work

• Distributed GNN systems.

• Federated learning for GNN.
• DGPE significantly diverges from the FL category in that: 
• 1) DGPE considers distributed GNN inference processing services with a variety of cost optimization 

objectives, allowing attainable data sharing across edge servers, while FL focuses only on the GNN 
model training and particularly stresses user privacy by physical data isolation. 

• 2) DGPE targets a technically distinct execution mechanism from FL, where DGPE only touches the 
distributed clients and edge servers, and processes GNN inference workload in parallel without the 
orchestration of centralized cloud servers (as required by FL).

• Collaborative edge intelligence.

• Graph data placement.



System model

• System overview
• the edge network that hosts distributed model execution
• the data graph formed by clients’ associated data, which feeds the GNN model as the input graph
• We bridge them by further defining graph layout

• Cost Factors
• Data collection
• GNN computation
• Cross-edge traffic
• Edge server maintenance

• Cost-Efficient Graph Layout Optimization Problem



Approximation algorithm design for static input graphs



Approximation algorithm design for static input graphs



Adaptive algorithm design for evolved input graphs



Evaluation



Thanks

22


