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Introduction

What is contrastive learning?
e contrastive learning
(origins in computer vision field)

* aself-supervised learning method to learn
general features of datasets without labels

* based on whether the samples are similar
or not

How to get similar samples?

* By data augmentation
* Crop
* Resize

Recolor

Positive Pairs




Contrastive Learning — Graph Contrastive Learning

An example: GraphCL (Graph contrastive learning with augmentations, NIPS 2020)
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Data augmentation Type Underlying Prior
Node dropping Nodes, edges Vertex missing does not alter semantics.
Edge perturbation Edges Semantic robustness against connectivity variations.
Attribute masking Nodes Semantic robustness against losing partial attributes per node.
Subgraph Nodes, edges Local structure can hint the full semantics.




A General Paradigm of GCL
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* At first, two augmented graphs are generated via graph augmentation functions.

* Then, the two graphs are fed into a shared GNN to learn node embedding, which is then optimized with a
contrastive objective that pulls together congruent embedding pairs of the two augmented graphs while
pushing others away.
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Graph Augmentation Methods of GCL
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Adversarial Graph Augmentation to Improve Graph Contrastive Learning (NIPS 2021)

AD-GCL — adversarial GCL with a learnable augmenter
* Using adversarial training to remove the redundant information, according to Information Bottleneck

* Formulate as a min-max optimization problem:

AD-GCL: %I'pei;,l_m}lxl(f(G); f(t(G@))), where G~ Pg,t(G) ~T(G),

* |nstantiate with a GNN-augmenter, learning how to drop edges from the initial graph:
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into topology augmentation
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Graph Contrastive Learning with Cohesive Subgraph Awareness
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ABSTRACT

Graph contrastive learning (GCL) has emerged as a state-of-the-art
strategy for learning representations of diverse graphs including
social and biomedical networks. GCL widely uses stochastic graph
topology augmentation, such as uniform node removal, to gener-
ate augmented graphs. However, such stochastic augmentations
may severely damage the intrinsic properties of a graph and dete-
riorate the following representation learning process. Specifically,
cohesive topological properties (e.g., k-core and k-truss) indicate
strong and critical connections among multiple nodes; randomly
removing nodes from a cohesive subgraph may remarkably alter
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Cohesive Topology Augmentation for Social Graph Contrastive Learning

Introduction

« Common topology augmentation strategies include node dropping, edge removal, subgraph sampling, etc.
Existing methods mainly follow a stochastic manner to conduct topology augmentation.

* Some methods adopt total randomized augmentation operations, like removing nodes or edges with an
equivalent probability.

* nodes and edges usually hold diverse levels of importance in a graph = randomly deleting important
edges/nodes may cause the augmented views to vary far away from the original graph — degrading the
learned graph/node embedding.

i Question: Can we develop a

| unified framework to incorporate
| graph properties into GCL

' mechanisms and benefit graph

' representation learning?
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Cohesive Topology Augmentation for Social Graph Contrastive Learning

Cohesive Subgraph

Cohesive subgraph is a widely prevalent and significant substructure with crucial applications in various
fields such as Network Modeling and Analysis, Anomaly Detection, Text Analytics, Biology, Ecology, etc.

For instance, in the field of Biology, some studies detects densely connected regions in large protein-protein
interaction networks that may represent molecular complexes.

k-core is a maximal subgraph in which every node has
at least k links to the other nodes.
e provide rich information for various applications,
such as user influence and community detection
e plays an important role in analyzing coauthor
social networks
k-truss is the largest subgraph in which every edge is
in at least (k — 2) triangles of the subgraph.
e triangle can indicate the stability of the social
network topology
* reveal the transitivity in the link formation of
networks




CTAug Framework

* Topology Augmentation Enhancement: enhances the probabilistic and deterministic augmentation process separately
with the consideration of the cohesive subgraphs;

e Graph Learning Enhancement: boosts GNN encoder to better capture the original graph’s cohesion properties.

Module 1:
Topology
Augmentation
Enhancement

foa

Original Gra Aug. Graph (k-core)

Module 2:
Graph Learning
Enhancement

Cohesive Subgraph Extraction

Probabilistic Topology Deterministic Topology Augmentation

Augmentation
Edge Weight |
Dropping Probability DK Updating
Refinement
Reweighted Graph
P4 \ g

~ Aug. Graph (k-core) Aug.}Graph (k-truss)

Aug. Graph (k-truss).

— /

— ¥

Subgraph Structure-Aware Subgraph Structure-Aware

GNN Encoder (k-core) GNN Encoder (k-truss)

\ / ‘\"x«
I ) === [T T[] ORI === [T |
Graph Emb,  Ma¥ImiZe  Granh Emb.  Graph Emb.  V13XimiZeé  Granh Emb,

(Original) \A:‘%reeme“t (k-core Aug.) _ (Original) Agreement .00 Aug )

Multi-Cohesion-Aware Embedding Fusion

N 4
| | | | | | | | |Original Graph Embedding

Dropping Probability Refinement
* reduce the probability of node/edge dropping
operations on the cohesive subgraphs
* pélr =1-¢e)- Par, € € (0,1]
* more importance in cohesive subgraph - higher
probability to be saved

Subgraph-aware GNN encoder

« MPNNSs have been proven to be limited in
capturing subgraph properties, e.g., counting
substructures

* GSN: AGG ((hv, hy, Sy, Su)ue]\f(v))r s, counts how

many times node v appears in a set of subgraph
structures

e directly applying GSN into CTAug face will two

issues: low efficiency; losing track of the original
graph

* we propose O-GSN: AGG ((hv, hy, Sp, Sﬁ)ueN(v))



Cohesive Topology Augmentation for Social Graph Contrastive Learning

Experiments
Table 1: Dataset statistics for graph classification.
Category Dataset  #Graph #Class Avg. #Nodes Avg.#Edges Avg.Degree Avg. kyax (k-core) Avg. k. (k-truss)

IMDB-B 1,000 2 19:77 96.53 9.76 (high) 9.16 10.16

Social IMDB-M 1,500 3 13.00 65.94 10.14 (high) 8.15 9.15

;,‘;Z‘ah COLLAB 5,000 3 74.49 2457.78 65.97 (high) 4053 4152

e RDT-B 2,000 2 429.63 497.75 2.32 (low) 2.33 3.09

RDT-T 203,088 2 23.93 24.99 2.08 (low) 1.58 2.46

Biomedical ENZYMES 600 6 32.63 62.14 3.81 (low) 2.98 3.80

Graph PROTEINS 15113 2 39.06 72.82 3.73 (low) 3.00 3.83

Table 2: Accuracy (%) on graph classification (OOM: out-of-memory).
Mathad Social Graphs (High Degree) Social Graphs (Low Degree) Biomedical Graphs

IMDB-B IMDB-M COLLAB AVG. RDT-B RDT-T AVG. ENZYMES PROTEINS AVG.
InfoGraph 71.3410.24 47.93+0.71 69.12+0.15 62.80 89.39+1.81 76.23+0.00 82.81 26.73+3.75 74.09+£0.48 50.41
AD-GCL 71.28+1.10 47.59+0.62 71.22+0.89 63.36 88.84+0.90 76.51+0.00 82.68 27.33+2.28 73.39+0.85 50.36
AutoGCL 71.14+0.71 48.61+0.55 67.27+2.64 62.34 89.31+1.48 77.13£0.00 83.22 29.83+2.24 73.33£0.27 51.58
RGCL 71.1410.64 48.28+0.60 73.48+0.93 64.30 91.38+0.40 OOM / 33.33+1.61 73.37+£0.35 53.35
GraphCL 71.48+0.44 48.11+0.60 72.3611.76 63.98 91.69+0.70 77.4410.03 84.57 32.83+2.05 74.32+0.76 53.58
CTAug-GraphCL  76.60+1.02 51.12+£0.57 81.72+0.26  69.81 92.28+0.33 77.48%0.01 84.88 39.17+1.00 74.10£0.33 56.64
FOAO 71.40£0.38 48.68+0.36 73.40+0.46  64.49  91.66%0.59 77.24£0.00 84.45  34.60+1.06 74.32£0.46 54.46
CTAug-JOAO 76.80+0.71 51.19+0.88 81.90+0.53 69.96 92.19+0.24 77.35£0.02 84.77  39.92+1.36 74.46%0.13 57.19
MVGRL 71.88+0.73 50.19£0.40 80.48+0.29  67.52 OOM OOM / 34.20+0.67 74.33%£0.62 54.27
CTAug-MVGRL 73.04£0.65 50.79£0.54 81.09+£0.37  68.31 OOM OOM / 35.46+1.20 75.00+0.38  55.23




Cohesive Topology Augmentation for Social Graph Contrastive Learning

Experiments

Table 5: Results on node classification. The baseline results
(except GRACE and GCA) are copied from [60] because we fol-
low the same experimental setup. Meanwhile, we run GRACE
and GCA by ourselves as we need to ensure that the exactly
same configurations (neural network hidden units, training

Table 3: Ablation study of CTAug-GraphCL. algorithm parameters, etc.) are used for GRACE/GCA and our

enhanced CTAug-GRACE/CTAug-GCA for a fair comparison

Method IMDB-B IMDB-M COLLAB AVG.
(OOM: out-of-memory).
CTAug-GraphCL 76.60+1.02 51.12+0.57 81.72+0.26 69.81
ModuledAblation Method Coauthor Coauthor Amazon AVG
. ¥.
Only Module 1~ 71.54%0.27  49.11:048  72.64:0.63  64.43 b Physics Computers
Only Module 2 73.80+1.21 50.27+0.81 80.03+0.42 68.03 DeepWalk+features ~ 87.70+0.04 94.90+0.09 86.28+0.07 89.63
G ; GAE 90.01+0.71 94.92+0.07 85.27+0.19 90.07
go;le;lon Property Alzlaslon 39+0.14 3610 VGAE 92.11+£0.09 94.52+0.00 86.37+0.21 91.00
nly K-core 75.9'2:?:( .'67 51. 79_0.1 81 6x( .'16 69.:56 DGI 92.1510.63 94.51+0.52 83.95+0.47 90.20
()nly k-truss 76.12+1.20 50.99+0.57 80.71+0.30 69.27 GMI OOM OOM 82.2140.31 /
MVGRL 92.11£0.12 95.33+0.03 87.52+0.11 91.65
GRACE 92.83+0.10 95.56+0.05 86.96+0.14 91.78
GCA 92.89+0.02 95.55+0.03 87.48+0.11 91.97
CTAug-GRACE 92.96+£0.05 95.68%0.01 87.59+0.12 92.08
CTAug-GCA 92.98+0.04 95.61+0.01 88.30+0.13 92.30




Cohesive Topology Augmentation for Social Graph Contrastive Learning

Conclusion

* To introduce the awareness of cohesion properties (e.g., k-core and k-truss) into GCL, this work proposes a
unified framework, called CTAug, that can be integrated with various existing GCL mechanisms.

* Two modules, including topology augmentation enhancement and graph learning enhancement, are
designed to incorporate cohesion properties into the topology augmentation and graph learning processes
of GCL, respectively.

* Extensive experiments have verified the effectiveness and flexibility of the CTAug framework.

Significance

* Our method provides a general approach for generating augmented graphs guided by prior knowledge of
substructures applicable to any domain.
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